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Abstract-FuIly-developed, combined, natural convection heat and mass transfer in an inclined open- 
ended channei is analyzed. General solutions to the governing equations are given and the conditions of 
existence of solutions are determined for all Lewis numbers. The results include expressions for the flow 
rate, Nusselt number and Sherwood number. Two examples illustrating the use of the general solutions 

are also presented. 

1. INTRODUCTION 

COMBINED natural convection heat and mass transfer 
processes have received considerable attention due to 
the importance of these phenomena in many indus- 
trial and natural processes. One particular application 
is open-cycle desiccant cooling systems [I]. The 
motion of the fluid is caused by the buoyancy forces 
arising from temperature and concentration gradi- 
ents. The transport of energy and mass are governed 
by the equations of conservation of energy and mass 
for multicompon~nt mixtures. These equations are 
usually simplified by the following classical assump- 
tions: only binary systems are considered: the 
Boussinesq approximation is valid; the concen- 
tration of the diffusing component is small (dilute 
systems) ; viscous dissipation, thermal-diffusion and 
di~usion-therm0 effects are neglected and the two 
components of the mixture have essentially the same 
specific heats. 

Using these assumptions the equations governing 
these processes can be simplified to 

F*u=O (I) 

Du Vp -= 
Dr 

--j- +vVZu+[l -8(t-t,)--*(U~-~t’o)]g 

Dt 
- = CiVZt 
DT 

(2) 

(3) 

t To whom correspondence should be addressed 

In natural convection with combined heat and mass 
transfer, most previous literature has concentrated on 
external flows [24] which allow similarity solutions 
for uniform wall conditions. Also, an analogy with 
heat transfer has been used when Le = 1 [2]. 

The vertical open-channel geometry has been exten- 
sively studied for the case of natural convection 
heat transfer [5-131. Also, extensive numerical com- 
putations and experimental measurements have been 
done by Azevedo and Sparrow, to study the heat 
transfer characteristics of a developing natural con- 
vection flow field in an inclined channel [ 141. However, 
limited work has been done on the simultaneous trans- 
port of heat and mass transfer in open-ended vertical 
and inclined channels [15-l 71. 

Aung [lo] obtained a closed-form solution for the 
case of heat transfer only. considering the flow to be 
fully developed. Following his analysis. Nelson and 
Wood [ 171 considered combined heat and mass trans- 
fer. The work presented in this paper is an extension 
and generalization of refs. [IO, 171 where the general 
solvability conditions for all Lewis numbers are deter- 
mined. The analysis also takes into account the effect 
of the inlet pressure and gives the dependence of the 
transfer coefficients on the channel length. The solu- 
tion of the flow fiad and the heat and mass transfer 
rates, as presented in this paper, are also useful as 
means to check the accuracy of numerical solutions 
for combined heat and mass transfer at small Rayleigh 
numbers and would give an appropriate starting iter- 
ation for transient calculations. 

1933 
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NOMENCLATURE 

A ,, A, constants defined by equations (54) SC Schmidt number 
and (55) Shh Sherwood number based on b 

b channel width t fluid temperature 
B,, Bz constants used in equation (44) T dimensionless fluid temperature 
C,, C2 constants defined by equations (62) 11 velocity vector 

and (63) u dimensionless longitudinal velocity 
n mass diffusivity )I’ mass fraction of the diffusing component 

g acceleration due to gravity W dimensionless mass fraction 

Gr Grashof number, (At),B4g cos 4/(lzl’) x dimensionless longitudinal coordinate 

11, heat transfer coefficient Y dimensionless coordinate across the 

& mass transfer coefficient channel. 
H dimensionless heat added to the fluid, 

j1C’(YV-(Y)dY Greek symbols 
k thermal conductivity ci thermal diffusivity 
1 channel length CX,, CL,< constants defined in Section 3.2 
L dimensionless channel length B volumetric coefficient of thermal 

LC Lewis number expansion 
nz mass flux 8* volumetric coefficient of mass fraction 

M dimensionless mass added to the fluid, expansion 

N S:,U(Y)W(Y)dY S ,. 6, constants equal to P”‘(X) in Section 2. I 
ratio b*/fi and P”(X) in Section 2.2, respectively 

NUh Nusselt number based on h Y constant defined by equation (36) 

P pressure 1’ kinematic viscosity 

PO local hydrostatic pressure fluid density 

P dimensionless pressure ; angle of inclination. 

Pr Prandtl number 

Y heat flux Subscripts 

Q dimensionless flow rate. l,‘, U( Y) d Y 0 ambient or at channel inlet 

R constant defined by equation (23) r reference quantity 

Ra Rayleigh number S wall surface 

s variable of integration t temperature 

S constant defined in equation (43) 11’ mass fraction. 

2. ANALYSIS sc I/(Y) (8 W/8X) = (F w/a Y’) (7) 

2.1. Solvability corditiom where 

Considering the channel inclined at an arbitrary 
angle 0, as shown in Fig. I. the equations of change 
given above are greatly simplified by considering the 
flow to be fully developed. The dimensionless form of 
the governing equations become 

P’(X)-U”(Y) = r(X, Y)+NW(X, Y) (5) 

Pr U(Y)(aT/?X) = (a’T/dY’) (6) 

X = x/(lGr) 

Y = y/b 

U = ub2/(1 Gr)v 

P = (p-po)b4/(pl’v’ Gr’) 

T = (t - to)/(At)r 

W = (w- VV,J(AVV), 

I/ Wall Y=O 

0 
Wall Y= 1 

b 
/ 

/’ 4@? ,I 

1 ,, ,,1*,/’ 

,/’ 
Z 

g I 
FIG. I. Flow geometry anb coordinate system 

Gr = (At)rb4fig cos O/(/v’) 

Since the flow field is considered to be fully developed, 
the variation of inclination only affects the Grashof 
number by the cosine of the angle of tilt. The reference 
temperature and mass fraction differences (At), and 
(A,v)~ are chosen so as to obtain a convenient form 
for the boundary conditions. Differentiating equation 
(5) with respect to X and Y gives 
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P”(X) = (aT/ax)-tN(l3W/dX) (8) 

-U"'(Y) = (aT/aY)+N(aWpY). (9) 

Combining equations (6)-(8) yields 

P”(X)U(Y) = (l/I+) (S’T/c’Y2) 

+ (N/SC) (8 W/S Y”). (10) 

Integrating equation (10) twice with respect to Y gives 

= (I/Pr)T(X, Y)Jr(N/Sc)W(X, Y) (11) 

where j(X) and g(X) are functions of integration 
determined by the boundary conditions at Y = 0 and 
1. Since the same functions should be obtained, the 
following conditions of compatibility are required for 
the existence of a solution : 

f(X) = [(l/P4 (aT/i;Y)+ W/SC) (dw/aY)lY=” 

= -P”(X)Q+[(l/Pr) (dT/aY) 

+(N/Sc)(~WdY)l,=, c-4 

g(X) = (1 /m cc 0) + (N/SC) wx 0) 

= P”(X) 6’ [ il’ U(;)dz]ds-f(X) 

+(l/Pr)T(X, I)+(N/Sc)W(X, 1). (13) 

The conditions given by equations (12) and (13) are 
not sufficient and further restrictions apply on the 
prescribed quantities at the walls. To determine the 
allowable dependence of the boundary conditions with 

X. two cases of Le # I and Le = 1 need be considered 
separately. 

2.1.1. The case of Le # 1. In this case the dis- 
criminant of the set of equations (5) and (11) is not 
equal to zero, and the following expressions are 
obtained for the temperature and mass fraction : 

+f(w Y+g(X) -[P’(X) - U”(Y)] 1 I (14) 

+f(X)Y+g(X) -Le[P’(X)--U”(Y] 
1 > 

(15) 

Forming (aTI and (ii’Tj8Y’) using equation (14) 
and substituting these expressions in equation (6) 
yields 

Sc[ P”‘(X) 6’ [ [ U(z) d-1 ds+f’(X) Y+,‘(X)] 

-(I +Le)P”(X) = (l/Pr) q. (16) 

Taking the derivative of equation (16) twice with 
respect to Y yields 

ScPrP”‘(X)U(Y) = [U”“(Y)/U(Y)]“. (17) 

Equation (17) is valid only if P”‘(X) is equal to a 
constant, for convenience called 6 ,. Differentiating 
equation (16) with respect to X yields 

SC [,f”(X) Y+g”(X)] - (1 + Le)6, = 0. (18) 

Equation (18) implies that f “(A’) = 0 and g”(X) = 
(SC-‘+Pr-‘)S,. Thus, P(X), g(X) and f(X) are at 
most polynomials of degree 3. 2 and 1, respectively. 
Consequently. the prescribed temperature and mass 
fraction at the walls can be at most second-order 
polynomials of x. Also, the prescribed fluxes of heat 
and mass at the walls can be at most first-order poly- 
nomials of X. In addition, these boundary conditions 

should satisfy the compatibility relations given in 
equations (12) and (13). 

2.1.2. The case of Le = 1. In this case the dis- 

criminant of the set of equations (5) and (11) is equal 
to zero. Combining these two equations gives 

P”(X) 6’ [l U(z) d-]ds+,f(X) Y+g(X) 

= (l/Pr) [P’(X) - U”(Y)]. (19) 

Differentiating equation (19) twice with respect to Y 
yields 

U”“(Y)+PrP”(X)U(Y) = 0. (20) 

This result implies that P”(X) is equal to a constant, 
for convenience called S,. By forming the derivative 
of equation (19) with respect to X, we obtain 

,f”(X) Y+g’(X) = S,/Pr (21) 

which shows that f’(X) = 0 and g’(X) = 6JPr. 

Therefore, P(X), g(X) and f(X) are at most poly- 
nomials of degree 2. 1 and 0, respectively. Therefore, 
the prescribed fluxes of heat and mass at the walls 
can be at most constants satisfying the condition of 
equation (12). Also. the prescribed temperature 
and mass fraction at the walls can be at most first- 
order polynomials satisfying the condition given by 
equation (13). 

3. APPLICATIONS OF THE ABOVE RESULTS 

3.1. Uniform temperature and mass fraction at the 

upper surface and uniform heat and mass,flttx into the 
fluid at the lower surface 

First consider the case where the boundary con- 
ditions are uniform temperature and mass fraction at 
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the upper wall, Y = 0. and uniform heat and mass 
fluxes at the lower wall, Y = 1. Let the temperature 
and mass fraction at the upper wall be t, and IV,, 
respectively, and let the flux of heat and mass from 
the lower wall into the fluid be q, and nl,, respectively. 
Defining the quantities (At),. (Aby),, Y, and rw as 

(At), = (t,- to). (Air), = (II’,-KM’J 

rt = q,hltWtM r,, = ~,WbW~vM. 

The dimensionless boundary conditions become 

for P. P(0) = -Q’/3, P(L) = 0 

for T, T(X.0) = 1, (;~T/c~JY)~, , = r, 

for W, W(X, 0) = 1, (alV/aY),=, = r,. 

Equation (5) implies that P’(X) is constant. Solving 
for U(Y) yields 

“(y)=!?? 3 
6 [( 

,_P_QL- 
2L(l +N) > 

+R(Y+l) Y(l-Y) (22) 
I 

where R is defined by 

R = (r,+Nr,,.)/(l +N). (23) 

For the boundary conditions at the upper and lower 
walls considered in this example, the compatibility 
conditions are satisfied for all Lewis numbers. These 
conditions give 

.f’(X) = ( 1 /SC) (r, + Nr,,.) (24) 

y(X) = (l/SC) (1 +N). (25) 

Substituting equations (24) and (25) in equations (14) 
and (15) yields 

T(X, Y) = l+r,Y (26) 

W(X. Y) = 1 +r,.Y. (27) 

Similar results were obtained by Nelson and Wood 
[l7] who specifically considered the case of Le = 1 
and arbitrarily generalized their results for all values 
of Le. 

Integrating the velocity across the channel yields 
the expression of the dimensionless flow rate 

Q= s II 
kY)dY= Q’(l-Z&) (28) 

where Q, is the limit of Q as L approaches infinity 
and is given by 

Qx = (l/24) (1 +N) (2+R) (29) 

and an approximation of Q for small values of Gr is 
given by 

Q = Q, 11 - (1/24)~, @I. 

The total heat added to the fluid is given by 

(30) 

1 (31) 

where H, is the limit of H as L approaches infinity 
and is given by 

H, =~~4~[?+R+r,[l+&R)]. (32) 

The average channel Nusselt number is 

Kh ~ ‘hdedb ~ = GrPrH. 
k(At), 

Similar expressions are obtained for the total mass 
transport of the fluid by substituting SC for Pr and 
r, for r, in the above relationships. Therefore, the 
expression for Sherwood number is given as 

(34) 

Table 1 gives a comparison of equations (30) and 

(31) for N = 0 with the results obtained by Glover 
[13] for the case of developing natural convection 
using the same boundary conditions including only 
heat transfer effects. It is seen that the fully-developed 
solution compares well with the numerical results at 
small Ra. For the same value of Ra. the accuracy 
decreases as the asymmetry expressed by r, increases. 

The heat transfer results were also compared to 

the fully-developed results given by Bar-Cohen and 
Rohsenow [18]. This comparison, for N = 0 and 
R = 0, gave the same correlation for the Nusselt 
number. 

3.2. Linear temperature variation on the upper wall 
and untform heat und massflux into the,fluid at the 
lower wall 

The reference temperature and mass fraction are 

defined by 

(At), = [t(l. 0) - t,J, (Abv), = [M$I, 0) - ~‘“1. 

The dimensionless boundary conditions are 

for P, 

P(0) = - Q’/2. P(L) = 0 

for T, 

T(X,O) = X,(X-L)+l. (aTjaY),=, = r, 

for W, 

W(X,O) = X,(X-L)+l. (~W/C?Y)~_, = r, 

where IX, = [t(l, 0) - t(0, O)]/l and tc,, = [M(I, O)- 
n(O, O)]//. These boundary conditions also satisfy the 
compatibility conditions for all Lewis numbers. The 
pressure distribution in this case is given as 

P(X) = (l/2) (X-L) bX+(Q’lL)l (35) 

where y is defined as 

y = a, + Na,, (36) 
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Table 1. Comparison of equations (30) and (3 1) with the numerical results of ref. [ 131 

Flow rate, Q Total heat added. H 

Equation Reference Percentage Equation 
(30) 1131 error (31) 

0.0832 0.0830 0.3 0.0832 
0.0828 0.0800 3.6 0.0828 
0.0821 0.0750 9.5 0.0821 

0.1248 0.1237 0.8 0.1886 
0.1212 0.1000 21.2 0.1832 

0.2913 0.2887 0.8 1.0543 
0.2835 0.2333 21.5 I .0272 
0.2700 0.1750 54.3 0.9799 

0.4994 0.4950 0.9 3.1355 
0.4865 0.4000 21.6 3.0679 
0.4642 0.3000 54.7 2.9240 

Reference Percentage 
1131 error 

0.0830 0.3 
0.0800 3.6 
0.0750 9.5 

0.1870 0.8 
0.1507 21.5 

I .0454 0.8 
0.8461 21.4 
0.5907 65.8 

3.1090 0.8 
2.5230 21.4 
1.7807 64.2 

r, 

0 

1.0 

5.0 

10 

Ra 

0.104 
1.089 
2.947 

0.165 
4.275 

0.066 
1.688 
4.978 

0.037 
0.957 
2.789 

From the compatibility conditions the following 
expressions are obtained : 

f(X) = -~Q+(l/Sc)(Ler,+Nr,) (37) 

g(X) = (~/SC) [(Lea,+Ncl,.) (X-L)+Le+N]. 

(38) 

Substituting these results in equation (16) yields 

V’,‘(Y)+cU(Y) = 0 (39) 

where 

c = Prcc,+NSca,,. (40) 

The velocity profile is obtained by solving equation 
(39), with the no-slip conditions U(0) = U( 1) = 0 and 
the following conditions obtained by writing equa- 
tions (1) and (5) at Y = 0 and 1, respectively : 

- U”(0) = (1 + N)S (41) 

- U”( 1) = (I+ N)R (42) 

where R is defined in equation (23) and S is given by 

S=l- Q2 YL 
2L(N+ 1) 2(N+ 1)’ (43) 

The form of the solution depends on the sign of par- 
ameter c. Three cases of c = 0, c < 0 and c > 0 are 
considered separately. In each of these cases, the 
velocity, temperature and mass fraction profiles are 

determined and expressions for the transfer quantities 
are given. 

3.2.1. The case of c = 0. Solving equation (39) for 
the velocity profile and using the no-slip conditions 
gives 

U(Y) = (B,Y-tB,)Y(l-Y) (44) 

where B, and B2 are determined using equations (41) 
and (42). For this case, the flow rate Q is given by 

Q = (l/24) (1 -tN) (R+2S). (45) 

The profiles of temperature and mass fraction are 
obtained by substituting the expressions of (i(Y), 

T(X, Y) = a,(X- L) + If (r, - Pr a,Q) Y- Pra,F( Y) 

(46) 

W(X, Y) = cc,(x-L)+l 

+(r,,.-Scq,Q)Y-Sccc,,F(Y) (47) 

where 

F(Y) = [(I +N)/120] [RY’+5SY 

-(10/3)(R+3S)]Y’. (48) 

The local Nusselt and Sherwood numbers at the walls 
are obtained by calculating the dimensionless heat 
and mass fluxes at each wall. These are given as 

atY=O 

h,b -r,+ PrcqQ 
Nu,JX) z F = ~____- 

?,(X- L) + 1 
(49) 

- r,v + SC c(,,Q 

c&(X-L)fC 
(50) 

atY=l 

Nub. I W> = r, 
‘[ 

6(X-L) + I+ r, 

l+N 
-mPra,(8R+3S) (51) 1 

Sk I WI = r, a,(X- L) + If r,. 

l+N 
- 360Sca”.(8R+3S) . 1 (52) 

3.2.2. The case oj’c < 0. Using the same procedure 
followed in the previous section, the flow rate is given 

by 

Q= (l/i)(A,+A,)[(l-cos1)sinhA 

+sin/Z(I-coshi)] (53) 

f(X), g(X) and P(X) into equations (14) and (15). 
We obtain 

A = _ (f,+N)S 
’ 2iX~“slnhi (54) 
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A? = 
(1 +N) 

L3sinLcoshi+cosIsinh1 

x 

[ 

R+ U(sini+sinhk) 

2 sin I sinh 1 1 (53 
which is an implicit equation for Q since A, and Az 

depend on Q. The profiles of temperature and mass 
fraction are given by 

T(X, Y) = cr,(X-_)+l+(r,-Pra,Q)Y-Pra,F(Y) 

(56) 

W( Y, Y) = c&.(X-L) + 1 

+(r,,.-SCC[,Q)Y-Sca,.F(Y) (57) 

where 

F(Y) = (l/L’){A,[(l- Y)sinLsinh1 

+(1-Y)sinisinhl-2sinksinh11 

i-A,[Ysinisinhi+sin1sinhiY] 

-(l/1*)(1 fN)RY}. (58) 

By evaluating the heat and mass flux at Y = 0, we 
obtain the same expressions as given in equations (49) 
and (50). However, the expressions for Nusselt and 
Sherwood numbers at Y = 1 become 

Nu,,, I W) = rr 
I{ 

c&Y-L)+ 1 +r,- 9[21’(A, 

-A,)sinlsinhl-(l+N)R] (59) 
1 

Sk, i (-U = rw 
/{ 

cc,@-L)+l+r,.- F[2d’(A, 

-A,)sinlsinh1-(l+N)R] . 
1 

(60) 

3.2.3. The case oft > 0. In this case we obtain the 
non-dimensional flow rate which is given as 

Q = (1/2L) (sinhi-sini) (C, +Cz) (61) 

where 

c, = 21’ (siiz$nh 21) [S sin A+ (R/l) cash 4 (62) 

c, = 212 tsiA]2:fiinm [Ssinh I.+ (R/1) cm 4 (63) 

which also is an implicit equation to solve for Q since 
C, and C, depend on Q. Expressing equation (61) in 
terms of a Taylor series expansion, we obtain the 
approximation 

l+N 
Q=14 2+R-2(1&-AL 

[ 

AL 71R _-___ 
2 

144 +O(l*) (64) 
> 1 

- FLowrate 
- Heat Flux 
- Mass Flux 

E 0 50 100 150 200 
z 

Lewis Number 

FIG. 2. Effect of Lewis number on the flow rate and the 
total heat and mSS flux for fixed Prandtl number (Pr = 0.7, 

Gr = 1.37, N = 0.5. U, = r*,, = 0.1. r, = 2.5 and r,. = 0). 

where this equation reduces to equation (28) for 
i = 0. The effect of Le appears only in the term of 
order 1“ which explains the accuracy of the approxi- 
mation given by Nelson and Wood [ 171. The profiles 
of temperature and mass fraction are given by 

T(x, Y) = u,(X- L) + 1 +r, Y+ ” -----_-F(Y) 
cc,+NLea, 

(65) 

W(X, Y) = a,(X- L) + 1 + r, Y+ Fq5+;-- F(Y) 
” 

where 
(66) 

F(Y) = 2L2[C,(l - Y)cosLcoshiY 

+C,(l-Y)cos1Ycosh1]+(N+l)(RY+S). (67) 

Again evaluating the heat and mass flux at Y = 0 gives 
expressions analogous to equations (49) and (60). 
However, the expressions of Nu and Sh at Y = 1 

become 

Nu,,,(X) = r, 
a, 

a,(X-L)+l+r,+-~--- 
a,+NLer, 

x [2i*(C, +C2) (coshi-cosi) 

-1 

- (r, + Nr, )I (68) 

Sh,,(X) = r, 1 Le u, 
a,@-L)+l+r,.+ a +NLecc, 

, I, 

x [21’(C, +Cz) (cosh3,-cos1) 

-1 

-(r,+Nr,.)I 
1 

. (69) 

Figure 2 gives the variation of flow rate, Q, the total 
heat, H, and the total mass, M, added to the fluid 
with Le for the conditions 

Gr = 1.367, N = 0.5 
r, = 2.5, rw = 0 

a, = 0.1. c(,, = 0.1. 

It can be seen that the flow rate, Q, the total heat, 
H, and mass, M, added to the fluid decrease with 
increasing Le for a fixed Pr. However. the reduction 
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0.6 0.3 
-Flowrate 

0.5 
- H&t Flux 
- Mass FLUX _ _ - - - - - - - _ _ I 

z 

‘3 1 
0.0 0.01 

f 
0 

IO.0 
0.1 1.0 10.0 100.0 

z 
Lewis Number 

FIG. 3. Effect of Lewis number on the flow rate and the total 
heat and mass flux for fixed Schmidt number (SC = 0.7, 

Gr = 1.37. N = 0.5, c(, = z,, = 0.1, r, = 2.5 and r,, = 0). 

in mass flux with increasing Lewis number is larger 

than the change in the volumetric flow rate and the 
heat flux. However, when SC is fixed, the quantities 
Q, H and M increase, reaching a maximum value at 
about Le = 1 and decrease with increasing Le as 
shown in Fig. 3. These results indicate that the flow 
rate, and the total heat and the mass added to the 
fluid depend separately on the Schmidt and Prandtl 
numbers and not only on their ratio as given by Lewis 
number. 

4. CONCLUSIONS 7. 

Combined natural convection heat and mass trans- 
fer between two inclined, parallel plates was studied 
for the case of fully-developed flow. Solvability con- 
ditions for which the governing equations have solu- 
tions are determined in terms of the allowable profiles 
for the conditions prescribed at the walls. When 
Le = 1, the prescribed temperature and mass fraction 
at the walls can be at most linear functions of the 
longitudinal coordinate and the fluxes of heat and 
mass prescribed at the walls should be constant. If 
Le # 1, the prescribed temperature and mass fraction 
at the walls can be at most second-order polynomials 
and the fluxes of heat and mass prescribed at the wall 
can be at most linear functions of the longitudinal 
coordinate. 

8. 

9. 

IO. 

Il. 

12. 

Two cases illustrating the method were considered 
in detail and closed-form expressions were obtained 
for the profiles of velocity, temperature and mass frac- 
tion and the Nusselt and Sherwood numbers. The first 
case considered a uniform temperature and mass frac- 
tion was imposed on the upper wall and uniform fluxes 
of heat and mass were imposed on the lower wall. In 
this case. it was found that the profiles of velocity, 
temperature and mass fraction do not depend on 
Prandtl and Schmidt numbers. The second case con- 
sidered a linear variation of temperature and mass 
fraction at the upper wall and uniform fluxes of heat 
and mass were imposed on the lower wall. In this case 
it was found that the profiles of velocity, temperature 
and mass fraction depend on Prandtl and Schmidt 
numbers and the other flow parameters. In particular, 
for a fixed value of Pr. the flow rate Q, the total heat 

13. 

14. 

15. 

16. 

17. 

18. 

HMr 31:9-H 

H and the total mass M added to the fluid reach a 
maximum value at approximately Le = 1. 
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ANALYSE DES TRANSFERTS COMBINES DE CHALEUR ET DE MASSE EN 
CONVECTION NATURELLE ETABLIE ENTRE DEUX PLAQUES PARALLELES 

INCLINEES 

Resum~n analyse les transferts simultanes de chaleur et de masse en convection naturelle pleinement 
ttablie darts un canal incline ouvert. Des solutions get&ales des equations de base sont donntes et les 
conditions d’existence des solutions sont dtterminees pour tous les nombres de Lewis. Les resultats incluent 
les expressions du debit, des nombres de Nusseh et de Sherwood. On presente aussi deux exemples illustrant 

I’utihsation de la solution generale. 

UNTERSUCHUNG DES KOMBINIERTEN, VOLL AUSGEBILDETEN WARME- UND 
STOFFUBERGANGS BE1 NATtiRLICHER KONVEKTION ZWISCHEN ZWEI 

GENEIGTEN PARALLELEN PLATTEN 

Zusammenfassung-Es wird der kombinierte Wlrrne- und Stofftibergang bei voll ausgebildeter natiirlicher 
Konvektion in einem geneigten, an den Enden offenen Kanal untersucht. Allgemeine Liisungen der 
Erhaltungsgleichungen werden angegeben und die Bedingungen fiir die Existenz von Liisungen fur alle 
Lewis-Zahlen ermittelt. Die Ergebnisse enthalten Ausdrticke fur den Durchsatz, die Nusselt-Zahl und die 
Sherwood-Zahl. Weiterhin werden zwei Beispiele zur Anwendung der allgemeinen Losungen angegeben. 

AHAJIH3 ECTECTBEHHOKOHBEKTHBHOFO CJIO)KHOI-0 IIOJIHOCTbIQ PA3BBTOF0 
TEIIJIO-M MACCOIIEPEHOCA MEmAY ABYMR HAKJIOHHbIMM TIAPAJIJIEJIbHbIMki 

I-IJIACTHHAMkl 

hUlOT~~~-!WiJIH3HpyeTcn CCTC~BeHHOKOHBCKTWBH~~ IIO.llHOCTbfO CTa6WIM3MpOBaHHbIfi COBMWTHbIti 
TennO-,, MaCCOnepeHOC B HaK,,OHHOM KaHUIe 6es TOpueBbIX CTeHOK. &lHbI o6ume peUleHHR OCHOBHbIX 

~aBH‘Z.HHii A O”~J,eJ,eHbI )‘CJ-,OBH,l WX C~WTBOBaHHK DIH BCeX 3HaYeHd 'MC.lIa nbIOWa. nOJIy'IeHb1 

abrpaxcearir ,mr C~0p0CTu TeqeHm, a TaKme nnn omen HyCCeJIbTa u IIIepeyna. Ha ABYX npeMepax 

lTOKa3aHOHCnOJlb30BaHBe 06uuix peLUeHHii. 


